
P

Y
a

1
b

Y

a

A
R
R
A
A

K
A
L
M
(
P
P

1

e
s
e
h
e
m
i
i
a
i
i

r
o
e

C

0
d

Journal of Hazardous Materials 183 (2010) 448–459

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

redictive monitoring and diagnosis of periodic air pollution in a subway station

ongSu Kima, MinJung Kima, JungJin Lima, Jeong Tai Kimb,∗∗, ChangKyoo Yooa,∗

Department of Environmental Science and Engineering, Center for Environmental Studies/Green Energy Center, Kyung Hee University,
Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
Department of Architectural Engineering, Center for Sustainable Healthy Buildings, Kyung Hee University, 1 Seochon-dong, Giheung-gu,
ongin-si, Gyeonggi-do 446-701, Republic of Korea

r t i c l e i n f o

rticle history:
eceived 3 March 2010
eceived in revised form 6 July 2010
ccepted 10 July 2010
vailable online 16 July 2010

eywords:
ir quality monitoring

a b s t r a c t

The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollu-
tants in a subway system using a lifting technique with a multiway principal component analysis (MPCA)
which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination.
The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics
of all of the indoor air samples collected during each day. These characteristics could then be used to
improve the handling of strong periodic fluctuations in the air quality environment in subway systems
and will allow important changes in the indoor air quality to be quickly detected. The predictive monitor-
ifted model
ultiway principal component analysis

MPCA)
eriodic pattern
redictive monitoring

ing approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS)
that indicated some periodic variations in the air pollutants and multivariate relationships between the
measured variables. Two monitoring models – global and seasonal – were developed to study climate
change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer
false alarms and missed faults due to non-stationary behavior than that were experienced with the con-
ventional methods. This method could be used to identify the contributions of various pollution sources.
. Introduction

Advanced monitoring and control strategies for atmospheric
nvironments are attracting renewed interest due to increasingly
tringent environmental regulations, because concerns about the
ffects of the air quality of indoor microenvironments on public
ealth are increasing. The Korea Ministry of Environment (MOE)
stablished the indoor air quality (IAQ) act in an attempt to control
ajor pollutants including PM10, CO2, CO, VOC and formaldehyde

n indoor environments such as subway platforms. There is a strong
nterest in monitoring air quality to quickly detect and identify
ny fault or abnormality that might negatively affect the air qual-
ty, because of the increasingly stringent air quality requirements
mposed by law [1].
Many variables in the systems process or environment are
ecorded on-line or off-line in modern systems, and the number
f variables recorded is increasing due to the development of new
lectronic sensors. Proper techniques are required to extract useful
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information from the extensive amount of recorded data [2]. Sub-
way station sites in a metro are considered to be air quality “hot
spots,” which also include heavily trafficked roadways and power
plants. Indoor air quality in subway stations can be strongly influ-
enced by one pollution source, particularly if the station is located
downwind of the source [3]. Therefore, a major objective of the
monitoring system is to quickly detect the occurrence of assignable
causes of contaminated air quality so that detailed measurements
and steps to correct ventilation issues can be undertaken in order
to improve the indoor air quality. The current status in a system
should be monitored in order to meet all of the operational targets
for quality, safety constraints and environmental constraints at a
minimum cost.

In metro systems, traditional monitoring systems have been
based on time-series analysis which measures and monitors a sin-
gle particulate matter pollutant (PM10 and/or PM2.5), which is also
known as univariate monitoring. Univariate monitoring charts are
widely used to monitor a small number of key pollutant variables
in an air pollution monitoring system that is capable of detecting

the occurrence of any event having a special or assignable cause.
However, monitoring only a single or a few variables is not ade-
quate, because many variables are correlated and interrelated and
therefore have an effect on one another. More specifically, univari-
ate diagnostics is not sufficient for detecting highly concentrated
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ollutants or outliers, because the environmental measurements
re not independent. Univariate methods may result in the mask-
ng of underlying factors [4]. Therefore, a monitoring system that
akes these correlations into consideration, a multivariate moni-
oring method, should be used for adequate control of indoor air
uality management. Multivariate monitoring that examines all of
he air pollutants simultaneously can determine how all of the pol-
utants are behaving relative to one another. This is particularly
seful for examining pollution, because several pollutants are often
resent at the same time and can have simultaneous effects on
uman health [5].

It is important to understand the dynamics and phenomena
f the environmental process being studied in order to monitor
nd interpret the generic status of indoor air quality. In other
ords, improvements in the monitoring process can be achieved

y obtaining better knowledge of the system by answering the fol-
owing questions: which variables characterize the process, what
re their internal interactions and what degrees of confidence can
e attributed to these measurements? All of these questions are
elated to the characterization of the system, which involves sev-
ral fundamental stages: the description of the system, the listing
f the variables that characterize the system behavior, the estab-
ishment of models between the variables, the identification of
he parameters which intervene in these models, the simplifi-
ation of the models to make them compatible with real-time
se, and the validation of these models [6]. Multivariate mon-

toring methods, including principal component analysis (PCA)
nd partial least squares (PLS), have been applied to monitor the
ir quality in many environmental systems [1,7–9] [1,3,7–9]. In
009, Lin [1] used a multivariate time-series model to simulate
he PM10 concentrations by studying the potential effects that

eteorological factors and co-pollutants may have on the day-
o-day variations in PM10 concentrations and to predict the PM10
eaks. They applied the two statistical methods of principal compo-
ent analysis (PCA) and cluster analysis (CA) to the NO2 and PM10
oncentrations obtained from the air quality monitoring network
n the city and found that the variations in NO2 and PM10 con-
entrations exhibited patterns similar to the variations in traffic
olume.

The indoor air quality in most subway stations is subject to large
eriodic fluctuations due to fluctuations in the number of passen-
ers, the number of trains and the ambient air conditions. Since
he concentrations of the air pollutants tend to fluctuate widely
ver a day, their means and variances do not remain constant with
ime. Therefore, the use of monitoring methods that utilize con-
entional, multivariate, statistical processes that implicitly assume
stationary, underlying environmental system may lead to many

alse alarms and missed faults. Better monitoring performance can
e achieved by accounting for this periodic pattern when applying
new monitoring process to this system.

In this study, a predictive monitoring and diagnosis method for
ndoor air quality in a subway station was developed to tackle
oth the problems associated with the multivariate correlation
f the indoor air pollutants and the non-stationary problem of
eriodic changes in the concentrations of the pollutants. The use
f a multiway, unfolding concept for a given periodic property
an improve the overall monitoring performance for all of the air
ollutants.

This paper is organized as follows. First, the data set used in
his study, data from a telemonitoring system (TMS) in a sub-
ay line in Korea, is explained. Second, the multiway principal
omponent analysis (MPCA) is briefly discussed to show the basic
oncepts involved in monitoring a batch process and a cyclic contin-
ous process. Third, a predictive monitoring and diagnosis method

s recommended in order to detect the occurrence of any event
aving a special or assignable cause. The Section 3 presents an
Fig. 1. Unfolding of the three-dimensional process data [12].

illustrative application, and then the conclusions are presented in
Section 4.

2. Material and methods

2.1. Data from a telemonitoring system (TMS)

In this study, air pollutant data sets from telemonitoring systems
(TMSs) in four Korean subway stations were used. TMSs were built
for the management of indoor air quality in subways. The TMSs
were located at the center of the subway platforms and measured
the concentration levels of seven air pollutants. The proposed data
sets consisted of NO, NO2, NOX, PM10, PM2.5, CO and CO2 concentra-
tions on a time-scale of one sample per hour (hourly averaged), plus
the two meteorological parameters of temperature and humidity,
in a subway station. The NO, NO2, and NOX concentrations were
measured using the chemiluminescences of nitro-oxide materials
and ozone. The PM10 and PM2.5 concentrations were measured
using the beta-ray attenuation principle with corresponding size
distribution filters. The CO and CO2 concentrations were measured
by studying the non-dispersive infrared (IR) radiation absorption by
carbon monoxide and carbon dioxide molecules at specific wave-
lengths. The meteorological conditions of temperature and relative
humidity strongly influenced the efficiency of the photochemical
processes leading to a noisy measurement and the formation of the
subsidiary particulates PM10 and PM2.5 [10,11].

2.2. Multiway principal component analysis (MPCA)

MPCA is an expanded method of PCA, which can be used to
monitor and analyze a batch process. MPCA can compress the data
and extract the information by projecting the data into a low-
dimensional space that summarizes both the variables and their
time histories during normal operation. The new data is then mon-
itored by comparing the progress of the projections of its variable
trajectories in the reduced space with the statistical distribution of
the trajectories from past normal operations [2,12,13]. Batch data is
typically reported in terms of batch numbers, variables and times.
The data is arranged into a three-dimensional matrix X (I × J × K),
where I is the number of batches, J is the number of variables and
K is the number of times each batch is sampled. This matrix can be
decomposed using various three-way techniques, one of which is
MPCA. MPCA is equivalent to performing ordinary PCA on a large
two-dimensional matrix X constructed by unfolding the three-way
data in the manner shown schematically in Fig. 1 [14,15].

MPCA decomposes the three-way array X into a summation of
the product of a score tr and a loading matrix Pr plus a residual array

E that is minimized in the least squares sense as follows:

X- =
R∑

r=1

tr ⊗ Pr + E- =
R∑

r=1

trpT
r + E = X̂ + E, (1)
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here ⊗ denotes the Kronecker product (X- = t ⊗ P is X- (i, j, k) =
(i)P(j, k)), R denotes the number of principal components retained,
r expresses the relationship among batches, pr is related to the
ariables and their time variation, and E is the residual matrix. The
rst expression in equation (1) represents the 3-D decomposition,
hile the second expression corresponds to the more common 2-D
ecomposition [12].

The statistics used for monitoring multivariable batch pro-
esses are Hotelling’s T2-statistic and the Q-statistic [12,16]. The
2-statistic is a Mahalanobis distance between the new data and the
enter of the normal operating condition data in a reduced dimen-
ion. The pattern of the residuals is monitored using the Q-statistic,
hich is also referred to as the squared prediction error (SPE). The

2-statistic monitors systematic variations in the principal compo-
ent (PC) subspace, while the Q-statistic represents variations not
xplained by the retained PCs. In other words, faults in the process
hat violate the normal correlation of variables are detected in the
C subspace by the T2-statistic, whereas faults that violate the PCA
odels are detected in the residual space by the Q-statistic. At the

nd-of-batch, the T2- and Q-statistics for batch i are calculated as
ollows:

2
i = tr

T S−1tr∼R(I2 − 1)
I(I − R)

FR,I−R−1 and (2)

i = eie
T
i =

KJ∑

c=1

E(i, c)2, (3)

here ei is the ith row of E, I is the number of batches in the refer-
nce set, tr is a vector of R scores, S is the (R × R) covariance matrix
f the t-scores calculated during the model development (which
s diagonal due to the orthogonality of the t-score values), R is the
umber of PCs retained in the model, and FR,I-R-1 is the F-distribution
alue with R and I–R–1 degrees of freedom [17]. The statistical lim-
ts on the T2- and Q-statistics are computed by assuming that the
ata conforms to a multivariate normal distribution. The confidence

imits of the T2-statistic are calculated from the F-distribution. The
istribution of the Q-statistic is calculated from the Chi-squared
istribution, SPEk,˛ = (vk/2mk)�2

2m2
k

/vk,˛
, where mk and vk are the

ean and variance of the SPE, respectively, and �2
2m2

k
/v,˛k

is the

ritical value of the �2 variable with 2m2
k
/vk degrees of freedom at

ignificance level of ˛ [16,17].
We considered a current batch to be in-control if it had a

00(1 − ˛) % confidence for a new sample, xnew, if T2
new < T2

lim and

new < Q 2
lim. Otherwise, a batch was designated as out of control.

ere, the T2 value was used to detect faults associated with abnor-
al variations within a model subspace, whereas the Q value was

sed to detect new events that were not taken into account in the
odel subspace.
We outline an MPCA-based method for real-time monitoring of

he progress of batch or periodic processes, such as indoor air qual-
ty monitoring. An indoor air quality is monitored in the reduced
pace defined by the principal components of the MPCA model.
he loading matrices from the MPCA of the reference database
ontain most of the structural information describing how the
ariable measurements deviate from their average trajectories
nder normal operation [12]. The details of the procedure are as
ollows.

(A) Develop normal operating condition (NOC) model
1) Get data and unfold X- (I × J × K) to X(I × JK).
2) The data X(I × JK) are normalized using the mean and standard

deviation of each variable at each time in the batch cycle over
all batches.
aterials 183 (2010) 448–459

(3) Apply PCA to the scaled data and obtain the score matrix T(I × R)
and loading matrix P(JK × R), where R is the number of principal
components.

(4) For each batch of X(I × JK), XT(I × JK) is considered and projected
into the loading space. Scores and residuals are calculated from
tT(1 × R) = xTP and e(JK × 1) = x − Pt. For a total of I batches, e
constitutes the residual matrix E(I × JK).

(5) Calculate T2, SPEk and obtain their confidence limits.

(B) On-line monitoring

(1) For new batch data recorded up to time k, Xnew(k × J), unfold
it to xT

new(1 × Jk). Apply the same scaling as was used in the
modeling.

(2) For the scaled xT
new(1 × Jk), fill in the missing values to generate

xT
new(1 × Jk) using one of the three filling approaches to fill the

future data. Then, calculate tnew and enew: enew : tT
new(1 × R) =

xT
newP, enew(JK × 1) = xnew − Ptnew

(3) Calculate T2 and SPEk

T2 = tT
newS−1tnew

SPEk =
Jk∑

c=(k−1)J+1

enew(c)2

where enew(c) is cth element of enew.
(4) Determine whether T2 or SPEk exceeds its confidence limit.

2.3. Predictive cyclic monitoring of indoor air pollutants using
MPCA

Univariate monitoring methods are often difficult to use when
important faults or events occur in indoor air quality, because the
signal to noise ratio in the measurement system of air pollutants is
lower than the ratio in chemical measurement systems. Multivari-
ate monitoring methods that can extract key information can treat
all of the air pollutant data simultaneously and analyze how all of
the air pollutants affect one another. Time-series data of air pollu-
tants in a subway station can be expressed as a three-dimensional
matrix (X(I × J × K)). In 1 day, j = 1, 2, . . ., J variables are measured
at k = 1, 2, . . ., K time intervals, and similar air pollution profiles are
collected over several days (i = 1, 2, . . ., I). The purpose of MPCA is
to unfold this matrix in order to obtain a two-dimensional matrix
on which PCA can then be performed.

The schemes of the predictive monitoring and the diagnosis of
the indoor air pollutant concentrations with the periodicity are
shown in Fig. 2.

First, the air pollutant data was collected from a telemonitoring
system in a subway station and was checked for outliers. Second,
off-line and on-line models of MPCA were constructed with the
complete, normal daily data in order to monitor the current sta-
tus of the indoor air pollutants within the period (day) and in
a period-to-period (day-to-day) time frame, and both global and
local seasonal models were constructed. The pollutant trajectories
and the variable relationships between the air pollutants could be
interpreted using the scores and loadings of the MPCA model. The
on-line MPCA model was used in the subway station to monitor
the status of the air quality during the day-to-day time frame and

also within the day. In other words, the on-line MPCA model was
used to monitor the current status of the air pollutants at the plat-
form of the subway station (the sample time of the sensors was 1 h).
After detecting an abnormal status, a contribution plot was used to
identify the sources of the contamination.
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ig. 2. The scheme of the predictive monitoring and the diagnosis of indoor air
ollutant concentrations with the periodicity.

The results of the present study are important, because the
onitoring performance was improved by the development of
multiway prediction method for the periodic properties of the

ndoor air pollutants. The unfolding capability of the MPCA to ana-
yze the predictive time histories of the air pollutants is very useful
or the periodicity of this kind of environmental system, because
he data from periodic air pollutants usually varies with time. An
mprovement in the results can be expected by explicitly account-
ng for the periodic patterns of the air pollutants while applying
dvanced monitoring and control strategies to the air pollution
anagement system.

. Results and discussion

.1. Monitoring system

In this study, seven air pollutants: NO, NO2, NOX, PM10, PM2.5,
O and CO2, and two meteorological variables (temperature and
umidity) were measured by TMSs in four subway stations. The
ata was collected between February 2007 and July 2008 with sam-
ling intervals of 1 h. In this study, the air pollutant concentrations

n the subway station exhibited seasonal patterns depending on the
hange in climate in Korea. In order to determine the local seasonal
ariations in the pollutants over four seasons, the data was classi-
ed into four groups, where each of the seasonal groups was used
o monitor the characteristics of the air pollutants during one of
he four seasons. In this study, MATLAB’s PLS toolbox and SIMCAP+

oftware were used to analyze the data sets.
Fig. 3 shows the univariate monitoring charts for the air pol-

utant concentrations at the S-monitoring station in Korea. These
nclude the concentration profiles of NO, NO2, NOX, PM10 and PM2.5
n the normalized scale [0–1]. The concentrations of some of the
ollutants were either high or low compared to the environmen-
al limits determined by the MOE, but this univariate monitoring

hart did not take into consideration the correlations between air
ollutants. As shown in Fig. 3a, the trends between NO and NOX

nd between PM10 and PM2.5 confirmed the correlation between
hese pollutants.
Fig. 3. The univariate monitoring charts for the air pollutant concentrations at a
monitoring station: (a) NO, NO2, NOX and (b) PM10, PM2.5.

Fig. 4 presents the diurnal and weekly variations in the pollutant
concentrations and the number of passengers, where the UGM unit
of PM10 and PM2.5 is �g/m3. The strong correlation between the
number of passengers and the hourly average concentrations of
CO2 and PM10 at the platform and the ticket gate in the subway
station can be seen in Fig. 4.

It was observed that the concentration of each of the pollutants
had a very similar profile (the peaks and valley points were simi-
lar) depending on the number of passengers. It was also observed
that the CO2 and PM10 concentrations simultaneously increased
twice during rush hour, which indicated that the increase in the
number of passengers caused the increase in the emission source
of the pollutants. There were good correlations evident between
CO2 and PM10, because these pollutants originated from similar
sources. In addition, the concentrations of other pollutants includ-
ing CO, PM2.5, NO, NO2 and NOX were also highly influenced by
the number of passengers during the entire period (not shown in
the figure). The fact that the concentrations were lower during the
weekend than on weekdays was referred to as the weekend effect.
It was also evident in Fig. 4 that the main pollution source in the
subway stations was the passengers, and multivariate pollutant
variables had strong correlations between them. The correlation
between the pollutants should be considered for air pollutant
monitoring [11].

Fig. 5 shows the hourly variations in PM10, PM2.5 and NOX con-
centrations between the four seasons during 1 year. It is evident
in Fig. 5 that the patterns of the seasons were similar, and the

concentration levels varied slightly among the seasons. Fig. 5 also
indicates that there was a large difference between the daily mini-
mum and maximum concentrations throughout all of the seasons.
The concentrations of PM10, PM2.5 and NOX started to increase in
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ig. 4. The diurnal variations for 1 week in the correlation between the number of
ocations in four subway stations: (a) number of the passengers, (b) CO2 concentrat

he morning hours, reached a peak at noon and then gradually
ecreased until a second peak at night.

In Fig. 5(a), the daily variability in pollutant concentrations was
reater in spring and autumn than in summer and winter. The
elative difference between the daily maximum and minimum con-
entrations tended to be larger during spring and autumn than
uring summer and winter, indicating that seasonal local sources
uch as yellow-storm events have a strong influence on particulate
atter. Fig. 5(b) shows peaks in the PM2.5 concentrations during all

f the seasons at noon and again during the late evening, while the
aily minimum concentrations were observed in the early morning
ours. The PM2.5 concentrations remained at the highest levels dur-

ng the spring. These results also indicate that seasonal local sources
ave a strong influence on the PM2.5 concentrations. Fig. 5(c) shows
hat the NOX concentration exhibited a distinct concentration pat-
ern during all of the seasons. The NOX concentration increased
uring the daytime before reaching peak levels and then gradu-

lly decreased during the nighttime. Fig. 5(a) and (b) also shows
distinct pattern in the NOX concentration which remained high
uring the winter season, while the PM concentrations were higher

n the spring than during the other seasons. These results indicate
hat the use of the heating system increased during the winter sea-

able 1
he conventional PCA and periodic monitoring model results.

PC number Conventional PCA

Global model Seasonal model

Eigen value Cumulative variance Eigen value Cumulative varian

PC 1 3.68 0.408 337 0.374
PC 2 2.22 0.655 195 0.591
PC 3 0.989 0.765 161 0.77
gers and the concentrations of CO2 and PM10 on the platforms and at the ticketing
) PM10 at platform, and (d) PM10 at ticketing place (Kim et al., 2009).

son which influenced the rate of fuel use and therefore the NOX

concentration.
Figs. 4 and 5 presented useful information including the hourly

and weekly variations of each of the pollutant concentrations. Dur-
ing the entire 1-week period, the concentration of each of the
pollutants remained at a higher level during the daytime and then
gradually decreased at night. In addition, the concentrations were
higher during the weekends than they were on weekdays during all
of the seasons. As noted above, this phenomenon was influenced by
the rate of heating fuel use and/or the number of passengers. These
results provided data for the adequate control of ventilation sys-
tems in a metro. In addition, a seasonal variation was observed in
the concentrations of each of the pollutants, and different patterns
were observed for each of the pollutants. These results indicate that
interrelationships between those pollutants that exhibited similar
patterns should be taken into consideration, and an appropriate
pollution control method should be based on the season.
3.2. Predictive monitoring and interpretation

Since univariate monitoring and multi-scatter plots are not suit-
able for showing relationships between objects and variables, the

A periodic monitoring

Global model Seasonal model

ce Eigen value Cumulative variance Eigen value Cumulative variance

18.4 0.383 15.7 0.327
1.0 0.592 12.2 0.576
3.86 0.672 4.75 0.67
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Fig. 5. The hourly average plots of the air pollutant concentrations during four
seasons: (a) PM10, (b) PM2.5 and (c) NOX .
aterials 183 (2010) 448–459 453

conventional multivariate statistical method, PCA, was applied to
fully study the seven air pollutants. However, periodic character-
istics should be considered due to the dynamic characteristics of
indoor air pollutants over time.

One year’s worth of data (March 2007 through February 2008)
was used for the training period. A subset of normal operational
data without significant disturbances was selected in order to
develop the training models. It is important to determine the num-
ber of principal components (PC) for the PCA model. The number
of PCs should be determined when taking into consideration both
the dimensionality and the loss of information. Several techniques
exist for determining the number of PCs, but there is no single dom-
inant technique [18]. The screen plot and cross-validation criterion
were used in this study.

Using a conventional PCA and periodic monitoring, a global
model for monitoring an entire data set was identified, and the
results are shown in Table 1.

A periodic monitoring model with three components that
explained approximately 67% of the original data set for the global
model and a conventional PCA model with three components that
explained approximately 77% of the original data set were identi-
fied.

Loading plots were used to interpret the data and to determine
how the variables were interrelated. Fig. 6 shows the loading plots
of the global model in the first two reduced dimensions and vari-
able importance in the projection (VIP) plot of a periodic monitoring
model. The data in Fig. 6 confirms that the conventional PCA and
the periodic monitoring models differentiate the air pollutants vari-
ables, which occupy different regions of the plot and exhibit an
understandable pattern in which the seven variables are grouped
into three clusters.

In the periodic monitoring results, the first cluster was related
to temperature and humidity, the second cluster was related to the
concentrations of PM10 and PM2.5, and the last cluster was related
to concentrations of NO, NOX and CO2. Therefore, if a specific sam-
ple was strongly related to any one cluster, then that sample would
also have a strong relationship with the pollutants in that corre-
sponding cluster. Clusters could therefore be divided according to
the correlation of variables. Since the first cluster was related to
PM10, PM2.5, NO2 and CO2 as is shown in Fig. 6(b), it could have been
related to two different variables. The concentrations of PM2.5 and
PM10 were proportional to the quantity of dust that resulted from
the inflow of outdoor air and to the movement of passengers. The
movement of passengers may have been the primary factor, con-
sidering that the Seoul metro is used by about 4.5 million people
per day. Carbon dioxide was the component related to the number
of real passengers, as it is related to respiration. The second cluster
consisted of CO, NOX and NO, and there was a strong correlation
between them. Carbon monoxide and NOX (specifically nitrogen
dioxide) are very similar. It is believed that the effect of the com-
mon pollutants can be seen in the process of combustion. The effects
of outdoor air, combustion for the operation of the subway and the
indoor air used for heating must be taken into consideration as
well.

Fig. 6(c) presents a variable importance in the projection (VIP)
plot. The variable importance in the projection (VIP) of PCA is
defined as follows:

VIP =
∑

a

(wak)2, (4)

where wak is the weight vector of the MPCA model. The VIP is calcu-

lated from the weight vector of the PCA model and the percentage
that is explained by the dimension of the model. The VIP can be
considered as a measure of how much a certain input corresponds
to the samples. Thus, important inputs based on the VIP value can
be selected. The VIP is the sum over all model dimensions of the
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ig. 6. The loading and VIP plots of the global model for normal condition data du
eriodic monitoring method and (c) VIP plot of the periodic monitoring method.

ontributions. Fig. 6(c) is representative of the variables that grad-
ally affect and fit the periodic monitoring model. Therefore, it is
onfirmed that these variables are effective. Seven air pollutants
ere determined to be strongly effective variables that belonged

o two clusters in the loading plot. More specifically, it was veri-
ed that the second cluster was the most effective cluster, and that
O was the most effective variable. The last cluster was related
o temperature and humidity. If the temperature is increased in

he subway tunnels then the humidity also increases, because the
uantity of the vapor from the evaporation of sweat exceeds the
uantity of the saturated vapor. Therefore, people in the subway
ay feel uncomfortable during the summer. Also, humidity and

emperature are deeply related to the concentration of formalde-
e training period: (a) loading plot of the conventional PCA, (b) loading plot of the

hyde. Formaldehyde is present in heat insulators, heating devices,
adhesives and smoke [19]. When a person is exposed to formalde-
hyde, it can stimulate the respiratory system and cause symptoms
including a headache, drowsiness, insomnia and asthma, etc.

We monitored conditions for a test period from February to July
2008 in order to investigate the possibility of monitoring using a
global model. Fig. 7 shows the monitoring results for the test period
using the global model for periodic monitoring.
Fig. 7(a) presents a score plot of indoor air pollutants in the
PC1–PC2 plane using the global model. It was possible to ana-
lyze the indoor air pollution history in the subway station because
data with similar pollution conditions tend to cluster together in
distinct regions within the reduced space of the global model. In
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Fig. 7. The monitoring results for the test period using a global model for the periodic monitoring method: (a) score plot, (b) T2 and Q chart and (c) time plot of the first
principal score.
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ig. 8. The contribution and SPE plots for abnormal air quality data obtained from
lot for the periodic monitoring model, and (c) a contribution plot for the periodic

ddition, it is possible to survey how the points develop as a func-
ion of time using SMART charts with the T2- and Q-statistics, as
hown in Fig. 7(b). This overview includes a summary of all of

he air quality variables and all of the model dimensions, and it
an be used to detect strong deviations in the systematic part of
he data. The Hotelling test statistic for multivariate normality, T2,
nd the SPE were observed in 95% of the tolerance region. The
bserved deviations in the Q value can be used to detect changes
bal model: (a) a contribution plot of the conventional PCA, (b) a time contribution
oring model.

in contaminated air quality more rapidly than can univariate
monitoring.

The greatest difference between the conventional PCA and peri-

odic monitoring models is that the periodic monitoring model can
take into account the periodic characteristics of indoor air pollu-
tants when monitoring air quality. Fig. 7(c) presents a time plot of
the first principal score. The normal, abnormal or contaminated air
quality can be observed over a specific time period in this plot.
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Contribution plots and SPE plots are generally used to focus on
nd investigate the profiles of sample variables. The contribution
lots and SPE plots used in this study are presented in Fig. 8.

The contribution plots compare each study sample to the aver-
ge sample, and the SPE plots show any variables that affected the
ifference between the model and the sample. The periodic charac-
eristics of the indoor air pollutants can be taken into consideration
n these contribution and SPE plots. As shown in Fig. 8(a), in the case
f the conventional PCA, it is only possible to inquire which vari-
bles most affect the abnormal status of the air pollutants in the
ultivariate monitoring model at a specific time and date. How-

ver, the variable that most affects the abnormal status over a
pecific time frame for specific data can be identified if the peri-
dic condition is taken into consideration when monitoring the air
uality. These results enable more appropriate control of an envi-
onmental management system over time and provide information
or the design of the system.

.3. Seasonal model (spring model)

Diurnal and weekly variations in the data over a season are
aused by seasonal sources. Therefore, the seasonal impact should
e taken into consideration in order to accurately monitor the

ndoor air quality for the appropriate management of air quality
n subway stations.

It is appropriate to use the seasonal models in order to cap-
ure the seasonal variations in each pollution region for an indoor
ir quality monitoring system with seasonal pollution characteris-
ics. If the pollution data corresponding to different seasonal modes
xhibits variations due to different meteorological conditions or
nvironmental changes, then each seasonal model can capture the
haracteristics of its seasonal pollution region better than a global
odel. However, this increase is at the cost of poor characterization

f the other pollution modes.
The data was classified into four groups in order to study the sea-

onal effects and to establish a seasonal (spring) model to compare
o the global model. The procedure for the modeling and monitor-
ng methods was the same as the procedure noted above, and it

as also applied to two different methods: conventional PCA and
eriodic monitoring. March to May 2007 was selected as the train-

ng period for modeling the seasonal model. A periodic monitoring
odel with three PCs that could explain 67.5% of the variation in the

ata was identified for the seasonal spring model, while the conven-
ional PCA model could explain 77% of the variation in the original
ata using three PCs. The number of retained principal components
nd the cumulative percent variance (CPV) for each seasonal model
re shown in Table 1.

Fig. 9 presents the loading and VIP plots of the seasonal model
or normal air quality condition data. In Fig. 9(a), two clusters were
resent in each seasonal model. The results of the first cluster were
he same for both the conventional PCA and the conventional mon-
toring model. PM10, PM2.5 and NO2 were strongly correlated with
ach other in the results of both the conventional PCA and the
eriodic monitoring model. The strong correlations among these
hree variables were confirmed by the results of previous stud-
es [10,20–22]. However, the second clusters were different. It was
bserved in the results of the periodic monitoring model that NO
nd NOX were interrelated, while PCA, NOX, CO2, CO and NO were
orrelated with each other in the case of the conventional PCA, as
hown in Fig. 9(a).

VIP plot in Fig. 9(c) presents that CO2 and PM10 were the most

ffective variables and the second cluster was the most effective
luster in the seasonal model of periodic monitoring model. The
orrelation among the clusters was different in the seasonal model
han in the global model. These results indicate that a different
elationship may exist between the variables in each of the variable
Fig. 9. The loading and VIP plots of the seasonal model for normal air quality data: (a)
the loading plot of the conventional PCA model, (b) the loading plot of the periodic
monitoring model, and (c) the VIP plot of the periodic monitoring model.

loadings. The PM10 and PM2.5 concentrations were strongly related
in the seasonal model.

The test data set from March to May 2008 was projected onto
the seasonal model in order to confirm the monitoring capabilities
of the model, and the results are presented in Fig. 10. The status
of the air quality can also be observed when monitoring using a
normal seasonal model in a 95% tolerance region.

The T2 and SPE plots shown in Fig. 10, which are similar to the
results of the global model, indicate that indoor air quality tends
to occasionally become abnormal. In addition, the results indicate
that a more persistent trend is establishing itself. The contribu-

tion plot of the SPE of abnormal air quality data (not shown in this
paper) closely examines the points of difference between each of
the samples and models and questions the reasons for the poor
air quality using the effective variables of the abnormal air qual-
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Fig. 10. The T2 and Q plots for the test period obtained

ty. For example, the air quality on March 23, 2008 (during the
pring season), which is noted on both the T2 and SPE plots, was
onsidered to be abnormal or in a contaminated state, and the con-
entrations of PM10 and PM2.5 were particularly high during the
vening.

. Conclusions

Global and seasonal air quality monitoring methods based on
ultivariate statistical methods were developed and applied to

he air pollutant data from a real-time TMS in a subway station
n this study. The multivariate air quality monitoring method pro-
ided more accurate and reliable results for air pollutants in a
ubway than did the univariate monitoring method due to the
ollutants’ multivariate characteristics. More specifically, the sea-
onal model can detect the abnormal behaviors of air pollutants
hat lead to unhealthy effects in metro systems that cannot be
etected using the global model. In addition, the seasonal mod-
ls allow us to isolate the characteristics of the seasonal variations
or the monitoring of specific air pollutants. The monitoring per-
ormance was improved in this study by developing a multiway

ethod to predict the periodic patterns of indoor air pollutants.
etter results can be expected by explicitly accounting for the
eriodic patterns of the air pollutants while applying advanced
onitoring and control strategies to the air pollution management

ystem.
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